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Abstract 

 

The 2010 National Security Strategy states, “The effective dissemination of a 

lethal agent would endanger the lives of thousands of people and have unprecedented 

economic, societal, and political consequences. We must continue to work at home with 

first responders and health officials to reduce the risk associated with high-consequence 

threats”.  Nerve agents, such as Sarin gas, are considered high consequence threats.  The 

threat of use of agents such as Sarin is as much a threat today as any other time in our 

history.  However, the suggested treatment protocol is not as precise as it could be.  

Debate exists over the dosing and timing of atropine and oxime treatment when 

combating the effects caused by exposure to nerve agents.  Oxime treatment has proved 

to be less than effective under several situations.  The research presented in this paper 

used a physiologically based pharmacokinetic model to determine if the current treatment 

protocol prescribed by the Center for Disease Control (CDC) and the U.S Army is 

effective in treating victims suffering from acute exposure symptoms.  Then the model 

was used to determine what treatment should be applied to victims suffering from mild 

exposure symptoms.  The results indicate that the current treatment prescribed by the 

CDC and U.S. Army is effective; however treatment with oxime therapy was not 

effective in alleviating symptoms for someone suffering from mild exposure.  By 

applying these results a treatment protocol was developed for someone suffering from 

mild exposure symptoms to Sarin gas.   
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A SYSTEM DYNAMICS APPROACH TO EFFICACY OF OXIME THERAPY IN 

MILD EXPOSURE TO SARIN GAS 

 
 
 
 

I.  Introduction 

 

 According to the 2010 National Security Strategy, “The effective dissemination of 

a lethal agent within a population center would endanger the lives of hundreds of 

thousands of people and have unprecedented economic, societal, and political 

consequences. We must continue to work at home with first responders and health 

officials to reduce the risk associated with high-consequence threats” (National Security 

Strategy, 2014:23).  The term high consequence threat in this situation deals with 

weapons of mass destruction (WMD), nuclear, biological and chemical.  While all three 

are considered high consequence threats, the use of nerve agents in recent history has 

prompted resurgence in the understanding of exactly how horrifying these chemicals can 

be when used as weapons.  “The Obama administration asserted Sunday for the first time 

that the Syrian government used the nerve gas Sarin to kill more than 1,400 people (21 

August 2013) in the world’s gravest chemical weapons attack in 25 years ” (Washington 

Post, 2014).   

While the use of chemical weapons by the military during combat operations is 

considered appalling, the use by terrorist groups on the civilian population is even worse.  

The most publicized chemical attack by terrorists occurred in Japan in 1994 and 1995 by 

religious doomsday sect Aum Shinrikyo.  The sect spread Sarin gas in an open area in the 
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city of Matsumoto and then later in the Tokyo Subway system (Yanagisawa et al, 

1995:290).   While not as devastating as planned, the terrifying impacts were felt by 

Japan and witnessed by the entire world.  Making this an effective terrorist event. 

Military professionals and the medical community have not given much thought 

to the specter of chemical and biological warfare.  The grandfathers and great 

grandfathers who fought in World War I are almost all deceased and the horrific image of 

gassed soldiers in the trenches of Europe is a distant memory.  But forgetting is no longer 

a luxury we can afford.  Nothing has changed except the increased availability of 

chemical and biological weapons (Smart, 1997:12).  The recent events in Syria and the 

not so distant incident in Japan serve as a reminder of the horrific potential chemical 

agents’ posses.  Additionally, with the increased threat of asymmetric warfare and radical 

groups willing to stop at nothing to promote their agenda, now more than ever, we must 

be able to both defend against attack and manage the casualties that might result in such 

an attack.  Nerve agents, specifically organophosphates, are a threat to both the civilian 

and military environment as well as an occupational hazard to workers exposed to 

organophosphate based pesticides.  The need to educate our healthcare providers on the 

proper course of action to take when confronted with causalities that are a direct result of 

chemical attack is vital.  The education will be at a minimal cost while providing 

extraordinary benefits, tangibly measured in the saving of human life.  

The treatment of acute poisoning due to chemical warfare agents is of limited 

interest to the pharmaceutical industry due to the fact that incidences are rare (Szinicz et 

al, 2007:24).  Nonetheless, the danger is real and imminent due to the availability and 

accessibility in creating chemical agents as a weapon employed by armies or terrorists in 
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an asymmetrical warfare environment. Despite intensive endeavors by the international 

community, culminating in the Chemical Weapons Convention that came into force in 

1997, highly toxic organophosphorus nerve agents have been stockpiled by different 

countries and pose a potential threat to military as well as the civilian population (Worek 

et al, 2007:194).  Although potent, most nerve agents are relatively short acting and most 

are quickly degraded or dispersed to non-lethal concentrations once released. This means 

that following an attack there is a high likelihood that emergency services will be able to 

rescue a large proportion of exposed victims and transport them to emergency 

departments. The ultimate successful recovery of patients from the hot-zone depends 

largely upon treatment given within the first few hours (Smart, 1997:82). 

One of the reasons that chemical and biological weapons are considered so 

dangerous is that the medical community, both civilian and military, have rarely ever 

seen patients who have suffered from exposure or have conditions that are similar to 

exposure to these agents.  Military medical personnel of the United States have not 

treated a chemical causality on the battlefield for nearly nine decades and they have never 

treated a biological causality (Smart, 1997:11).  However, terrorist attacks at home and 

abroad have increased the interest of civilian and military health care professionals, 

specifically first responders, within the Federal Emergency Management Agency 

(FEMA) and the Public Health Service (PHS) that would be required to respond in case 

of an attack on our own soil.   

The potential use of highly toxic organophosphate-type chemical warfare agents 

during military conflicts and by terrorists emphasizes the necessity for the development 

of effective medical countermeasures for self and buddy aid as well as for clinical 
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treatment.  These agents are relatively simple and inexpensive to make, easy to disperse, 

difficult to deter, feared by the public, and have a potential lethality to kill hundreds in 

one attack (Smart, 1997:79).  Thus nerve agents are the ideal weapon for the terrorist. By 

reviewing the work conducted by Holder and Seaman the goal is to test the efficacy of 

the treatment regimen prescribed by the U.S. Army and the Center for Disease Control 

(CDC).  Results of these tests will provide civilian and military medical professionals 

with the necessary information to save lives and reduce suffering. 

The three widely accepted classes of medication that are effective in the treatment 

of nerve agent exposure are anticholinergics, oximes and anticonvulsants (Cannard, 

2006:89).  The first line of defense and the most commonly used is atropine, which is an 

anticholinergic.  Atropine works by blocking the effects of excess acetylcholine at 

peripheral muscarinic sites (Rebmann et al, 2009:141).  However, in high concentrations, 

atropine may reduce and then block neuromuscular transmissions, possibly via pre- and 

postsynaptic mechanisms (Wali et al, 1987:587).  This makes atropine a powerful ally for 

first responders.  To cope with the respiratory problems, antidotes reactivating inhibited 

acetylcholinesterase (AChE) have been developed, formally described as oxime therapy. 

Their clinical effectiveness is still a matter of controversy because clearly assessing 

oxime effects is both highly complex due to the various microscopic reactions involved 

and there are problems in recording the distinct clinical changes.  Additionally, seizures 

and convulsions are possible due to exposure to nerve agents and these symptoms can be 

treated with anticonvulsants.  Diazepam is the most commonly prescribed medication for 

these symptoms. 
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Due to the lack of information on exposure to these agents controversy exists on 

the proper treatment, specifically treatment for nerve agents (organophosphates).  Debate 

exists over the dosing and timing of atropine and oxime treatment when combating the 

effects caused by exposure to organophosphates (Karallieddee, 1999:1074).  Oxime 

treatment has proved to be less than effective under several situations: when the bond 

between the organophosphate and AChE has become irreversible, when AChE is bound 

by organophosphates in the system faster than it is reactivated or when oxime treatment is 

stopped too soon (Szinicz et al, 2007:25).  And, once again, due to the low incidence rate 

of organophosphate poisoning little research into the development of new treatment 

methods has been studied. 

Even with the general consensus on the use of these antidotes to mitigate 

organophosphate exposure symptoms, several government agencies have varying dosing 

strategies (Cannard, 2006:89).  Antidotes against chemical warfare agents are "orphan 

drugs" given that these poisonings are rare (Szinicz et al, 2007:24).  Therefore, they are 

of limited interest to the pharmaceutical industry. For this reason, and recognizing the 

increasing threat of terrorist or asymmetrical use of chemical warfare agents, the 

responsibility for research into medical countermeasures against these weapons is of 

primary interest to armies as well as first responders. 

In order to test these disparities, physiologically based pharmacokinetic (PBPK) 

modeling can be used.  The PBPK model is cost-effective, does not require a great deal of 

time and eliminates the use of extensive animal testing.  The model uses compartments to 

describe different tissue groups that have similar pharmacokinetic properties.  Several 

researchers have applied PBPK modeling to predict levels of organophosphates in human 
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tissue. In 1994, Gearhart and others created the first such PBPK model for two types of 

organophosphates (Seaman, 2008:9). The researchers provided evidence that a PBPK 

model for organophosphates could be adapted for cross-species studies and across the 

family of organophosphorus chemicals (Gearhart et al, 1994:52).  

Due to the previously mentioned research, varying treatment guidelines and 

questionable effectiveness of oxime treatment lead Seaman to conduct a new study in 

2008.  Seaman developed a model to predict the concentration of organophosphates, 

atropine, oxime, acetylcholine (ACh), AChE and other chemicals in human tissue over 

time.  In 2011 Holder continued Seaman’s work with the use of PBPK modeling by 

further refining the data in order to develop guidance for the timing and dosage strategy 

for the treatment of exposure to organophosphates.  

The purpose of this work is to provide medical professionals, (military and 

civilian), with specific details that may prove vital in alleviating symptoms caused by 

exposure to nerve agents, expedite triage procedures and conserve the use of drugs that 

maybe ineffective in some scenarios.  The ultimate goal is to not only reduce the 

mortality rate among the initial victims but also improve the survival rate for those 

receiving follow on care. 

Research Objectives 

1. Validate the PBPK model created by Seaman and then subsequently modified by 

Holder and Shelley against prescribed treatment methods set forth by the CDC 

and U.S. Army.  

2. Determine if oxime therapy is effective in alleviating symptoms for an individual 

with mild exposure. 
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II. Literature Review 

History of Nerve Agents 

Weapons combined with chemical agents or chemical agents operating 

independently have been part of the evolution of warfare since prehistoric times.  The use 

of chemicals in warfare has been reported since Greek and Roman times, but it was not 

until the 19th century when rapid advances in chemistry and the chemical industry 

ushered in the modern era of chemical warfare.   With the increased knowledge of their 

topological effects came the increased interest from the military.  This provided the 

perfect nexus for the first employment of weapons of mass destruction during World War 

I (WWI).  The modern era of chemical warfare was born on 22 April 1915 in the town of 

Ypres, Belgium when German troops opened nearly 6000 cylinders of chlorine gas on 

opposing French forces (Cannard, 2006:86).   The events of WW I surrounding the use of 

chemical agents served as the beginning of continuously growing efforts to develop more 

effective chemical agents for use in warfare (Szinicz, 2005:168).  It was not until more 

advanced delivery systems were developed that the possibility for a threat to the civilian 

community arose. However, the 1990s witnessed the proliferation of these agents to 

terrorist agencies resulting in a common awareness for the necessity to include this threat 

in national and international emergency and risk management plans (Szinicz, 2005:173). 

The discovery and development of nerve agents was ushered in during the 

decades following WW I.  As the understanding of the powerful effects of these 

chemicals grew so did the development of new weapon variants.  The history of nerve 

agents began on 23 December 1936 when Dr. Gerhard Schrader of Germany accidently 
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isolated ethyl N, N-dimethylphosphoramidocyanidate, while trying to develop new 

insecticides (Cannard, 2006:169).  He immediately recognized the potential for military 

application and the development of nerve agents as weapons began in earnest.  The nerve 

agents’ Tabun, Sarin and Soman were developed by Germany, each more powerful than 

the previous. 

Table 1. Nerve Agent and Lethal Dose 
OP Compound U.S. Army Code LD50 (µg/kg)  

VX VX 9.15 

Soman GD 34.1 

Sarin GB 44.3 

Tabun GA 117 

 

  After World War II (WWII) Germany’s chemical warfare division was exposed 

to the North Atlantic Treaty Organization (NATO) and these nerve agents were 

sequentially designated as GA (Tabun), GB (Sarin) and GD (Soman), with G for German.  

Controlled animal studies of these agents revealed that death could occur within 20 

minutes of exposure to very miniscule doses (Somani, 2001:26).  In 1952 a British 

laboratory discovered another nerve agent, VX (V for venomous), while looking for a 

replacement to the insecticide DDT. (Somani, 2001:28).  Due to the lethality of VX it 

was never employed as insecticide and was produced solely as a nerve agent.  VX was 

chosen as a promising substance and full scale production commenced in 1961 in the 

United States (U.S.).  VX appears to be one of the most effective chemical warfare agents 

ever produced.  The lethal dose for humans is estimated to be about 0.3 mg/person for 
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inhalational and 5 mg/person for dermal exposure. Chemical variants were also produced 

in the Soviet Union and in China. Sarin and VX became the standard nerve agent in the 

USA (Szinicz, 2005:173).  The proliferation of these nerve agents continued even though 

they are viewed as the most toxic known chemical warfare agents.   

Even though the lethality of nerve agents has been well documented they have 

rarely been employed in mass during military offensive operations.  Even though the 

Germans had stock piled tens of thousands of tons of nerve agents they were never used 

during WW II (Cannard, 2006:87).  Speculation remains, but one of the most popular 

arguments is that Hitler was gassed during WW I and knew full well the horrors 

associated with the use of these agents of destruction.   

Despite the stockpiling of enough nerve agents to kill the world’s population 

several times over by the Soviet Union, the first documented use did not occur until the 

end of the Iran-Iraq war when the Iraqi Military used them against Iranian forces.  Iraq 

military used them once again in 1988 when they conducted a chemical attack on their 

own people in the town of Halabja, home to 45,000 Iraqi Kurds.  Five thousand people 

were injured and 200 killed during this attack (Cannard, 2006:87).  Since these agents are 

relatively simple and inexpensive to make, easy to disperse, and have high lethality to kill 

hundreds it can be assumed that they are the perfect weapon for terrorist organizations.  

However, it was not until June 1994 and March 1995 that they were employed by a 

terrorist organization on the civilian populace.  A radical group named Aum Shinrikyo 

attempted to spread Sarin gas in an open city, but due to the high level of dispersion of 

the nerve agent the attack was not as successful as they had planned.  Seven were killed 

and 144 were injured (Okumura et al, 1996:130).  The group learned from this error and 
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chose a target not as susceptible to changing wind speed and direction, the Tokyo 

subway.  In March 1995 the group again released Sarin, but this time the effects were 

more sinister resulting in 12 deaths and injuring another 5500 (Okumura et al, 1996:130).  

Even though the use of nerve agents has been employed only a few times the results have 

helped the medical communities create countermeasures that are effective. 

 

Toxic Mechanisms of Organophosphates 

The number of accidental, suicidal and homicidal fatalities due to 

organophosphorus (OP) compounds is estimated at having surpassed 300,000 per year 

worldwide (Eyer et al, 2007:108).  A lack of effective treatments, including antidotes, is 

considered to contribute to this high mortality rate (Buckley et al., 2004:1231). The 

efficacy of current antidotes is largely unproved, and many other potential antidotes have 

been developed but are yet to be tested in humans. Meanwhile, preparation for the 

terrorist use of organophosphate nerve agents is leading to the stockpiling of large 

amounts of these unproved antidotes to treat mass poisoning (Buckley et al., 2004:1232).  

Thus, research to improve the therapy of OP poisoning is compulsory.   

In order to understand the effects that nerve agents impose on the body it is 

important to first provide a brief description of the nervous system and the enzymes 

involved in the process.  The nervous system has two major subdivisions; the peripheral 

(PNS) and the central (CNS).  The peripheral has two subdivisions as well, the somatic 

and autonomic.  The autonomic portion of the nervous system deals with routine 

involuntary functions such as digestion, posture, and breathing.  The somatic division is 

responsible for the voluntary control of body movements via skeletal muscles.  The 
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central nervous system is the part of the nervous system that contains the brain and the 

spinal cord.  It integrates information it receives from, and coordinates and influences the 

activity of, all parts of the body (Fox, 2004:175). 

Inside the nervous system information flows from one neuron to another across a 

synapse, consisting of a pre-synaptic ending that contains neurotransmitters, 

mitochondria and other organelles and a postsynaptic ending that contains receptor sites 

for neurotransmitters.  The space between these is referred to as the synaptic cleft and it 

is about 10 nm wide (Fox, 2004:169).  Neural transmission across synapses of motor 

neurons is a one way action, from the CNS to the receptor.  This occurs when 

neurotransmitters are released from the pre-synaptic neuron, transmitted across the 

synaptic cleft and then received by the post synaptic cell (Fox, 2004:169), Figure 1.    

ACh molecules are the most common neurotransmitters in the body and the ones that are 

directly affected by organophosphates (Fox, 2004:175). 

 
Figure 1. Synaptic Cleft at Homeostasis (Fox, 2004:169)  

The pre-synaptic neurons contain small sacs that store ACh molecules.  Once 

neural stimulation occurs, the sacs fuse with the membrane of the pre-synaptic neuron 

and creates a pore through which the ACh molecules diffuse into the synaptic cleft (Fox, 
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2004:169).  Once in the cleft, ACh molecules diffuse across the synapse through 

interstitial fluid and briefly bind to receptor sites on the post synaptic cell (Fox, 

2004:169).  The bind between ACh molecules and the post synaptic receptor sites is the 

driving force that stimulates the neural functioning of the post synaptic cell (Fox, 

2004:171).  ACh molecules will dissociate from the receptor sites and maintain the 

potential to re-bind to the receptors for a brief period of time (Fox, 2004:171). 

  The human body contains two types of cholinergic receptors (having to do with 

acetylcholine), the muscarinic and the nicotinic.  Both muscarinc and nicotinic receptors 

are found in the Central Nervous System and the Peripheral Nervous System.  Muscarinic 

receptors are responsible for the stimulation of smooth muscles and the exocrine glands 

(sweat glands, salivary glands, and mammary glands are examples) as well as action in 

the central nervous system.  Nicotinic receptors are located in the neuromuscular 

junctions of somatic muscles which are part of the peripheral nervous system associated 

with the voluntary control of body movements via skeletal muscles (Fox, 2004:154). 

AChE are enzymes embedded on the post synaptic cell that terminate the action 

of the acetylcholine molecules (Fox, 2004:173).  The serine hydroxyl group of the AChE 

binds to the acetyl portion of the ACh.  When this bind occurs the choline moiety of the 

ACh is released and hydrolysis then separates the acetyl moiety from the AChE 

(Cannard, 2006:87).  The choline moiety will return to the pre-synaptic cell to be 

recycled for the creation of new acetylcholine, while the acetyl group will react with 

water to form acetic acid (Cannard, 2006:87).  Since AChE are the only enzymes that 

hydrolyze acetylcholine without their presence ACh will persist in the synaptic cleft and 

continually bind and disassociate with the receptor sites and cause excessive neural 
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stimulation (Fox, 2004:173).   Overstimulation of these receptors caused by 

organophosphate (OP) exposure prevents the coordinated contraction of the muscles, 

which in turn leads to spasm and paralysis if not combated early.  Symptoms associated 

with exposure to OPs include but are not limited to blurred vision, eye pain, headaches, 

increased salivation, nausea, vomiting, diarrhea, and bowel or urinary incontinence 

(Cannard, 2006:87).  

Once in the system nerve agents work their toxic behavior by irreversibly 

inhibiting AChE by permanently binding to the enzyme at the esteratic site (Wright, 

2009:464), Figure 2.  This prevents the normal binding and rapid degradation of ACh by 

AChE.  Normally, the action of ACh released into the synaptic cleft is terminated by the 

enzyme AChE via rapid cleavage of ACh into choline and acetic acid (Cannard, 

2006:88). Cholinesterase, i.e. AChE and Butyrylcholinesterase  (BuChE), are the main 

targets of OP compounds (Worek, 2005:195).  The initial response is the persistence of 

ACh in the synaptic cleft which causes the action of ACh to be prolonged at the 

receptors.  This produces the primary effects of nerve agents. 

Pre-Synaptic Cell Post-Synaptic Cell

ACh

AChE

OP

Nerve Agent Attack

 

Figure 2. Synaptic Cleft with Nerve Agent Present (adapted from Fox, 2004:169) 
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After a period of time, which is different for each OP type, the OP-esterase bonds 

will mature by the de-alkylation of the OP (Cannard, 2006:89).  Once matured, the bond 

between OP and esterase becomes irreversible and both the OP and the AChE are 

eliminated as active agents.  The maturation process is known as aging.  Once the aging 

process has occurred, AChE levels only recover through the production of new AChE.  

Regeneration of AChE is a slow process, occurring at a rate of approximately 1% per day 

(Siddel et al, 1997:137). 

Nerve agents are OPs, esters of phosphoric acid which are commonly used in 

pesticides, flame retardants, lubricating oil additives, plasticizers, softeners and 

emulsifiers. Chemically, they are characterized by a central phosphorous atom bound to 

an oxygen atom, two alkyl groups and a leaving group (Cannard, 2006:88), Figure 3. 

 
Figure 3. Basic Structure of Nerve Agent (Canard, 2006:87) 

 

Contrary to popular belief, nerve agents are liquids, not gases, but they can be 

aerosolized or vaporized during an explosion (Cannard, 2006:87).  Thus,  the most 

common path of exposure is inhalation.  This is also the most effective pathway due to 

the systemic distribution through the circulatory system.  Symptoms typically peak within 

15 to 30 minutes after exposure (Cannard, 2006:89).    



15 

Antidote Intentions 

The three types of medication widely accepted for the treatment of nerve agent 

exposure are anticholinergics, oximes and anticonvulsants.  The use and treatment using 

anticonvulsants will not be examined in this paper.  A patient’s recovery requires 

treatment within a few hours of exposure due to the bond that can form between 

organophosphates and AChE.  After the aging process has occurred, only through the 

new production of AChE be restored, which could take months (Cannard, 2006:90).  

Atropine is the typical anticholinergic used in the treatment of nerve agent 

intoxication.  Atropine works by competitively and reversibly blocking Ach binding to 

the muscarinic receptor.  The presence of atropine reduces the availability of muscarinic 

receptors for ACh (Cannard, 2006:92).  This will lead to reduced secretion of exocrine 

glands and reduces over stimulation of smooth muscles (Cannard, 2006:92).   

Additionally, in high concentrations (those given to nerve agent victims) atropine may 

reduce and then block neuromuscular transmissions, possibly via pre- and postsynaptic 

mechanisms, in both receptor groups (Wali et al, 1987:587).   Using atropine as a first 

line of defense against nerve agents has been widely accepted and has proven to reduce 

the mortality associated with the exposure to organophosphates (Karalliedde, 1999:1075).  

The military provides service members with auto injectors, such as the AtroPen in the 

Mark I kit.  This kit contains 2 mg of atropine and is injected intramuscularly.  The 

Center for Disease Control (CDC) recommends a dosage on the range between 2-6 mg, 

depending on the severity of the exposure.  The body will naturally metabolize and 

excrete atropine overtime, however at high doses atropine can cause adverse health 

effects (USAMRICD, 2007:139). 
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While atropine can help alleviate or even reverse the effects of nerve agent 

intoxication, oximes help restore the function at the synaptic cleft.  Oximes work by 

reactivating AChE that is bound by OPs.  In essence the oximes pry the OP off the 

AChE.  But oximes are only effective prior to the maturation or “aging” of the bond 

between OPs and AChE.  The half-time aging for tabun, Sarin and VX is between 5 and 

48 hours, while soman is only 2-6 minutes.  For this reason oxime treatment is useless for 

patients exposed to soman (Cannard, 2006:90).   

The oxime available in the U.S. is pralidoxime, commonly known as 2-PAM Cl.  

It can be administered either by intramuscular injection or intravenously.  In order to 

counter the aging process it should be administered as quickly as possible to patients with 

moderate to severe exposure (Cannard, 2006:90).    

 

Disparity in Treatment methods 

While the general types of medications that are beneficial to victims of nerve 

agent exposure is generally universally accepted, the specific recommendations as to the 

dose and timing vary (Cannard, 2006:91).  Acute poisoning with chemical weapons may 

induce severe toxicity, requiring immediate therapy, or even cause death.  An obvious 

life-saving component of poisoning therapy is the use of specific antidotes. But evidence 

supporting the efficacy of antidotes in acute poisoning with chemical weapons is lacking 

(Szinicz et al, 2007:23). Since these types of poisonings are infrequent, compared to other 

forms, there has been little research interest by pharmaceutical companies to develop new 

antidotes, but also to confirm the effectiveness of those that are currently available. 

Hence, such antidotes are considered “orphan” drugs (Szinicz, 2007:24). 
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There exists a lack of evidence that supports how effective the current treatment 

methods for organophosphate exposure are (Szinicz, 2007:24).  This is due in large part 

to the low incidence rate, but also to the ethics of testing human subjects with nerve agent 

exposure.  In vitro studies have demonstrated the potential for oximes to be effective, but 

in actual practice they have proved to be less than effective and even potentially harmful 

(Szinicz, 2007:24).  

The World Health Organization (WHO), the Centers for Disease Control and 

Prevention (CDC), the U.S. Army Medical Research Institute of Chemical Defense 

(USAMRICD), and the New York Department of Health (NYDH) all have published 

guidelines for the treatment of nerve agent exposure.  Each agency has different 

guidelines on the dose and timing of the dose to be administered (Cannard, 2006:91), 

Tables 2 and 3. 

Table 2. Antidote recommendations for mild/moderate symptoms 
(CDC 2010, NYDH 2005, USAMRICD 2007) 

 
  CDC 

(field) 
CDC 
(hospital) 

NYDH USAMRICD 
(field) 

USAMRICD 
(hospital) 

Atropine Initial Dose 2 – 4 mg 2- 4 mg 2 – 4 mg 2 mg 2 - 4 mg 
 Repeat Dose 2 mg 2 mg Not 

specified 
2 mg No 

instructions 
 Repeat Interval 5 – 10 min 5 – 10 min 2 – 5 min 10 min No 

instructions 
Pralidoxime Initial Dose 600 mg 1000 mg 600 mg 600 mg 600 – 1200 mg 

 Repeat Dose No 
instructions 

No 
instructions 

Not 
specified 

600 mg No 
instructions 

 Repeat Interval No 
instructions 

No 
instructions 

30 – 60 min, 
then hourly 

10 min No 
instructions 
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Table 3. Antidote Recommendations for Severe Symptoms 
(CDC, 2010; NYDH, 2005; USAMRICD, 2007) 

 
  CDC 

(field) 
CDC 
(hospital) 

NYDH USAMRICD 
(field) 

USAMRICD 
(hospital) 

Atropine Initial Dose 6 mg 6 mg 6 mg 6 mg 6 mg 
 Repeat Dose 2 mg 2 mg Not 

specified 
Not applicable, 
only 6 mg 
carried in field 

2 mg 

 Repeat Interval 5 – 10 min 5 – 10 mg 2 – 5 min Not applicable 3 – 5 min 
Pralidoxime Initial Dose 1800 mg 1000 mg 1800 mg 1800 mg 1800 mg 

 Repeat Dose No 
instructions 

No 
instructions 

Not 
specified 

Not applicable, 
only 1800 mg 
carried in field 

1000 mg 

 Repeat Interval No 
instructions 

No 
instructions 

30 – 60 min, 
then hourly 

Not applicable 60 min 

 
 

What this disparity in treatment has led to in the medical community is a lack of 

precise guidance.  According to three medical doctors with a history in nerve agent 

poisoning, the treatment method is left to the discretion of the attending physician (Burns, 

Newmark, Casavant, personal communication, 14 April 2015).  While no one would 

argue with a trained professional on this highly complex subject it would only seem 

logical that at least rudimentary guidelines exist for follow on treatment for someone who 

is exposed to nerve agents.  Guidelines that should exist, if for no other reason than to 

deviate from. 

The main area of concern that has been raised from previous studies is in the use 

of oxime in the treatment of nerve agent poisoning.  These studies even doubt as to how 

effective it may be or suggest that it may be harmful (Eddleston et al, 2009:2).  A 

randomized controlled study conducted by Eddleston and others challenged the efficacy 

of pralidoxime in organophosphate insecticide poisoning (Holder, 2011:21).  The study 

compared the results of a group receiving the WHO recommended dose pralidoxime 

(WHO dosing mirrors that of the CDC) against a control group receiving a placebo.  It 
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was noted that the oxime was successful at reactivating the AChE in the blood compared 

to no reactivation in the control group (Eddleston et al, 2009:4).  However, despite the 

reactivation or potentially because of the reactivation of AChE the researchers found that 

the treatment resulted in a 69% increase in mortality (Eddleston et al, 2009:4).  The 

conclusion from the study was that the dose of oxime recommended by the WHO is most 

likely to be ineffective and has the potential to be harmful (Eddleston et al, 2009:4).  This 

could be in part because the dose level recommended by the WHO is based on level that 

is effective in in-vitro studies vice in-vivo studies (Eddleston et al, 2009:5).  Based on 

these findings this research group recommended further study into the effects of oxime 

doses for use in humans as a treatment for nerve agent intoxication. 

 

Physiologically Based Pharmacokinetic (PBPK) Modeling History on 

Organophosphate Treatment 

The threat of the use of the nerve agents was formerly confined to the military 

field and hence easier to anticipate and treat.  But events throughout the world have made 

this case unjust and thus not a viable option to consider.  Due to this fact it is critical to 

evaluate medical interventions that may be effective in mass exposures when first 

responders and intensive care unit resources are likely to be overwhelmed. In such a 

situation, first responders should be able to administer specific first aid. In this situation 

antidotes that can be administered with auto injectors by the intramuscular route are 

particularly suitable. These antidotes should have a broad spectrum of action (e.g. active 

against various OP) along with minimal adverse effects, since they may be administered 

in panic situations without poisoning (Eyer et al, 2006:110). The question remains how to 
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test the efficacy of those antidotes according to the currently accepted “gold standard” of 

evidence-based medicine, without running into inevitable ethical conflicts (Eyer, 

2006:110).  This can be accomplished through physiologically based pharmacokinetic 

(PBPK) modeling. 

PBPK modeling calculates the concentrations of chemicals over time in different 

tissues of the body, Figure 4.  The model contains physiological properties such as tissue 

volume, blood flow rate and metabolic pathways.  The model then applies mathematical 

constructs that allow the coordination of species–specific physiology, chemical-specific 

information, and the experimental protocol for the chemical or chemicals of concern. 

PBPK models aid scientists and decision makers to simulate the time-course 

concentration of chemicals in experimental animals and humans, to better determine 

estimates of actual chemical doses delivered to the target tissue, and thereby to provide a 

better prediction of response (Gearhart, 2009:791).   

 
Figure 4. Basic PBPK Schematic (Gearhart et al, 1994) 
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Within the model, the organism under study is divided into discrete tissue 

compartments with similar physiological and pharmacokinetic properties (Hoang, 

1995:101).  Mass balance equations are created for each compartment to describe the 

concentration of the chemical in those compartments with respect to time. Within each 

compartment, binding and bio-transformation of the chemicals will affect the net 

accumulation rate of the chemical (Hoang, 1995:101).  From this, ordinary differential  

equations are created to describe the alteration of chemicals to irrelevant byproducts 

through reaction with other chemicals and enzymes (Hoang, 1995:102). 

Blood flow provides the medium through which the chemical is distributed.  The 

product of the fraction of the blood flowing into each compartment, the concentration of 

the chemical (mass/volume), and the cardiac output (volume/time) determines the amount 

of chemical entering the compartment (mass/time) (Seaman, 2008:24).  A partition 

coefficient is used to describe the diffusion of the chemical from the tissue compartment 

into the venous blood flow.  The amount of chemical leaving a compartment (mass/time) 

is equal to the product of the fraction of blood flow from the compartment, the cardiac 

output (volume/time), the concentration of the chemical in the tissue compartment 

(mass/volume), and the inverse of the tissue/blood partition coefficient (Seaman, 

2008:25).  The compartment coefficient is directly related to outflow: a higher coefficient 

equates to slower outflow.   

The use of PBPK modeling to estimate the effects of OPs on the human body can 

be traced back to a study conducted by Maxwell and others in 1987.  This particular 

study looked at the inhibition of cholinesterase by soman in various organs and plasma of 

rats.  During this study the researchers used a multiple regression model to determine the 
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extent of cholinesterase inhibition (Holder, 2011:23).  From this model it was determined 

that blood flow, carboxylesterase and cholinesterase accounted for 94% of the variability 

(Maxwell et al, 1987:71).  Blood flow accounted for 79% of the variations, leading to the 

conclusion that a PBPK model could be used to model the kinetics of soman on in-vivo 

cholinesterase inhibition (Maxwell et al, 1987:72). 

Gearheart and others took PBPK modeling to the next step in 1994.  They 

developed a model for organophosphate exposure and AChE inhibition in humans.  The 

group developed a model to look at two different organophosphates, DFP (an insecticide 

known as diisopropylfluorophosphate) and parathion.  The model parameters were 

derived from in-vivo data from rats and then scaled to humans.  The models were 

validated by comparing the data collected from the simulation to literature obtained from 

exposure to these chemicals (Holder, 2011:26).  The conclusion reached was that this 

type of model could be used for various types of organophosphates (Gearhart et al, 

1994:58).   

In 2002 Timchalk and others developed a PBPK model for chlorpyrifos, the 

active ingredient in some commercially available pesticides.  This study used 

experimental data from rats and humans exposed to chlorpyrifos along with literature to 

construct a model that exhibited the behavior seen in experimental trials (Holder, 

2011:26).  Since the model constructed was capable of describing human and rat response 

to chlorpyrifos from acute and chronic exposure to a good degree it was concluded that a 

PBPK model would be a good starting point for other organophosphate models 

(Timchalk et al, 2002:35). 
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Worek and others created a model to demonstrate the effectiveness of different 

oximes in nerve agent exposure.  The team built a model to look at the effectiveness of 

the three types of oximes (obidoxime, oxime and HI6) in response to exposure to Sarin, 

CycloSarin and VX (Holder, 2011:23).  The model was verified by comparing the AChE 

levels predicted by the model to in-vivo levels measured in a patient poisoned by 

parathion and treated with atropine and obodoxime (Holder, 2011:23).  From data 

gathered from the model it was determined that the model would be capable of 

comparing various oximes, determining effective oxime concentrations, and for 

developing oxime treatment for organophosphate poisoning (Worek et al, 2005:195).   

In 2008 Seaman and in 2011 Holder continued the use of PBPK modeling to 

describe the behavior associated with organophosphate exposure and develop specific 

treatment recommendations.  Seaman’s research aimed at determining the effectiveness 

of the atropine and oxime doses and timing under current prescribed requirements.  He 

concluded that oximes were more effective when used against less toxic 

organophosphates, but less effective, or even deadly, when organophosphates had a very 

high toxicity (Seaman, 2008:52).  Holder, using Seaman’s work as a starting point 

concluded that the use of oximes against strong organophosphates, such as nerve agents, 

is ineffective and has the potential to increase the severity of symptoms (Holder, 

2011:56).  Additionally, he used the data obtained from the model to develop an optimal 

dosing strategy that varies significantly from the currently prescribed guidance. 

 

 

 



24 

III. Methodology 

Model Configuration 

In order to facilitate the functionality of the PBPK model simulations were 

performed using Stella 10.0.5 numerical integration software.  The model was configured 

such that compartments for the pulmonary, arterial, venous, brain, diaphragm, liver, fat, 

slowly perfused, richly perfused, thigh and kidney tissues were created.  The model 

configuration describing absorption, distribution, metabolism and excretion was based 

largely on the model developed by Gearhart and others in 1994.  The model used for this 

simulation process also depicts the behavior of ACh, AChE, BuChE and carboxylesterase 

in the compartments previously described.  The model structure is illustrated in Figure 4. 

 
 

Figure 5. PBPK Schematic (Seaman 2008:31) 

The model portrays organophosphate absorption through inhalation into the 

pulmonary tissue and then distributed through the rest of the system through arterial 
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blood flow.  Atropine and oxime are introduced via intramuscular injection in the thigh or 

through intravenous means.  These two compounds are then eliminated by metabolism 

via enzymes in the liver or excreted in the urine through the kidneys.  ACh and esterase 

were produced and degraded in each of the different tissue compartments as well.  The 

reactions between enzymes and chemicals entering the body occurred within each of the 

previously described compartments with the exception of the fat compartment.  Since 

esterase concentrations were assumed to be negligible or non-existent in fat tissue no 

reaction was simulated in the fat compartment (Seaman, 2008:32).  Additionally, 

degradation of OPs and esterase occurred by maturation of the organophosphate-esterase 

bond.  Due to the buildup of acetylcholine in the postsynaptic membranes, synapses are 

kept in a permanent state of stimulation.  With the muscles unable to return to their 

natural resting state the most basic of functions are impaired or completely disabled.  The 

most crucial of all of these functions is respiration.  Without the natural respiratory 

contraction and relaxation the body is deprived of oxygen.  Since respiratory failure is the 

leading cause of death in nerve agent victims the diaphragm was singled out as the 

compartment within the PBPK model to track for symptoms.   

 

Equations 

A complete list of equations used is provided in Appendix A.  The PBPK model 

works on the premise of a mass balance equation with reactions taking place in each 

compartment between the enzymes and chemicals introduced.  The equation for this 

reaction is shown in equation 1. 

Accumulation = 𝐼𝑛 − 𝑂𝑢𝑡 + 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛             (1) 
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Flow into the system of the chemical agent is achieved through inhalation while 

treatment for the symptoms is achieved through intramuscular injection or intravenous 

flow into the venous tissue.  Outflow from the system is through exhalation, urination and 

metabolism.  The generation and consumption in the compartments occurs through 

natural synthesis as well as degradation and chemical reactions between different 

components.  The natural synthesis of esterase was zero order and represented by a 

synthesis constant.  Degradation of esterase was represented by a first order process and 

was dependent on the esterase concentration within the compartment (Holder, 2011:31).  

The concentration of esterase in each compartment is shown in equation 2. 

𝑑(𝐸𝑠𝑡𝑒𝑟𝑎𝑠𝑒)
𝑑𝑡

= 𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ (𝐸𝑠𝑡𝑒𝑟𝑎𝑠𝑒)  (2) 

The reaction between the organophosphate and the esterase is shown in equation 3. 

𝑑�𝐸𝑠𝑡𝑒𝑟𝑎𝑠𝑒𝑂𝑃 �

𝑑𝑡
= ki(Esterase)(OP) − ks �Esterase

OP
� − ka(Esterase

OP
)                 (3) 

For the previous equation the values of k are defined as: 

 ki= OP reaction rate coefficient with esterase (mol-1time-1) 

 ka= OP esterase complex aging reaction rate coefficient (time-1) 

 ks= OP esterase complex natural separation reaction rate coefficient (time-1) 

The chemical reaction between the organophosphates and the esterase with oxime 

is shown in equation 4. 

d�EsteraseOP �

dt
= −𝑘𝑟 �𝐸𝑠𝑡𝑒𝑟𝑎𝑠𝑒

𝑂𝑃
�𝑂𝑥𝑖𝑚𝑒      (4) 

kr= OP esterase complex reaction rate coefficient with oxime (mol-1time-1) 

The interaction between ACh, AChE and atropine is shown in equation 5 

(Seaman, 2008:34). 



27 

d(active ACh)
dt

= 𝑝1 � 𝑝1
(𝑝2+𝑎𝑡𝑟𝑜𝑝𝑖𝑛𝑒)� − 𝑝2(𝐴𝐶ℎ𝐸)(𝑎𝑐𝑡𝑖𝑣𝑒 𝐴𝐶ℎ)  (5) 

When atropine is not present the equation simplifies to equation 6. 

𝑑(𝑎𝑐𝑡𝑖𝑣𝑒 𝐴𝐶ℎ)
𝑑𝑡

= 𝑝1 − 𝑝2(𝐴𝐶ℎ𝐸)(𝑎𝑐𝑡𝑖𝑣𝑒 𝐴𝐶ℎ)    (6) 

 p1=ACh binding rate (mass/time) 

 p2=ACh degradation constant (time-1) 

In order to determine the effectiveness of the treatment an individual is receiving 

the model applies a symptom tracking value.  This symptom value is used to track the 

severity of symptoms as well as the effectiveness of the treatment being received.  It is 

the ratio of the concentration of the ACh molecules that are actively stimulating the 

nerves over the basal concentration of active ACh molecules.  At homeostasis the value is 

one.  When an OP is introduced the ability of AChE to break down ACh is inhibited, thus 

overstimulation occurs and the symptom value to a value greater than one.  Hence, the 

greater the symptom value in the model, the more severe the symptoms.  The equation for 

the output of the symptom line is shown in equation 7. 

𝑑(𝑆𝑦𝑚𝑝𝑡𝑜𝑚𝑠)
𝑑𝑡

= 𝐴𝐶ℎ 𝑠𝑖𝑡𝑒
(𝐵𝑎𝑠𝑎𝑙 𝐴𝐶ℎ 𝑆𝑖𝑡𝑒)

           (7) 

To quantify the symptom value and establish when symptoms first appear and 

when death transpires, values were taken from the literature.  According to Siddel and 

others levels at 10% inhibition would produce mild symptoms, but not to the level that 

would require medical attention.  Levels above 25% inhibition would require treatment 

(Siddel et al, 1997:139).  Further guidance is provided by Ashani and Pistinner who state 

that when 90% inhibition occurs death is imminent (Ashani and Pistinner, 2004:365).  

For the purpose of the symptom value, 10% equates to 1.10 which would be very mild 
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symptoms, 25% is 1.25 for the symptom value which would be moderate symptoms that 

would require some treatment, and 1.90 would be the level at which death occurs.  

The only way medical personnel can determine the severity of exposure is 

through visually discerning the clinical signs of the patient.  The Agency for Toxic 

Substance and Disease Registry (ATSDR) has developed triage procedures for nerve 

agent causalities, Table 4.  A value of 1.25 for the symptom value would refer to 

someone experiencing minimal symptoms and would be triaged with a priority of three.  

Likewise 1.90 would be someone that is expectant. 

Table 4.Triage Protocol for Nerve Agent Causalities (ATSDR, 2014) 

 

The rationale behind the triage of individuals exposed to a nerve agent in a mass 

causality event would be based on symptoms as well as antidote supplies available.  

Individuals displaying minimal symptoms would not be treated at the scene, but would be 

labeled as minimal and sent to the nearest hospital.  The administration of atropine would 

most likely not be given to someone displaying these types of symptoms simply based on 

the fact that they are not in dire need of treatment to alleviate the symptoms.  The 
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antidotes would only be given to those suffering from the most severe symptoms with a 

likelihood of survival.  

The symptom level is directly related to the exposure level.  According to the U.S. 

Army Medical Research Institute of Chemical Defense (USAMRCD) the levels of 

exposure are moderate (MCT), incapacitating (ICT) and lethal (LCT).  The 

concentrations of these levels are listed in Table 5.  

Table 5. Vapor Toxicity (mg-min/m3) (USAMRCD, 2007:129) 
Agent LCT50 ICT50 MCT50 

GB(Sarin) 100 75 3 

 

The term Ct is used to describe an estimate of dose. C represents the 

concentration of the substance (as vapor or aerosol) in air (usually expressed as mg/m3) 

and t represents time (usually expressed in minutes).  The Ct value is the product of the 

concentration (C) to which an organism is exposed and multiplied by the time (t) during 

which it remains exposed to that concentration (Siddel et al, 1997:142). 

 

Assumptions 

In attempt to mimic the functions of the human body several assumptions were 

made in the model.  First, the model assumes instantaneous mixing and equilibrium of the 

different chemicals within each of the compartments.  Second, metabolism of chemicals 

follows Michaelis-Menten kinetics.  And lastly, the release of acetylcholine from the pre-

synaptic nerve cell and diffusion of the neurotransmitter across the synaptic cleft is 

assumed to be instantaneous and continuous. 



30 

Generation and degradation of AChE is considerably slower than is represented in 

this model.  AChE regeneration occurs at a rate of 1% per day (Siddel et al, 1997:137).  

Due to the extremely slow nature of this regeneration, the parameters for AChE 

regeneration were modified to show a more exaggerated version of regeneration in order 

to demonstrate the nature of the symptoms over a timeline that is applicable to emergency 

room physicians. 

Parameters and Coefficients 

Parameters and coefficients for this model were obtained from literature or were 

retained from the Seaman model of 2008.  Sarin data was obtained from a 2005 PBPK 

model constructed by Gearhart.  The partition coefficients and metabolic parameters 

applied in this model provided antidote results that mimicked the observations seen by 

Gearhart in his model. A full list of the parameters and coefficients used can be found in 

Appendix B.  In addition to the aforementioned parameters a kidney elimination constant 

of 0.35 was used to produce reasonable elimination results that might be expected from 

urine excretion. 

The additional values listed in the model to include synthesis rate, and basal levels were 

obtained from Gentry and others (Gentry el al, 2002:122).  The degradation constants 

were obtained from the Seaman model of 2008.   

 

Simulation Protocol 

The simulation was broken down into two specific phases.  The first phase was 

verification.  During these simulations the intent was to verify the model was producing 

accurate results according to current treatment guidelines as prescribed by the Center for 
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Disease Control (CDC) and the U.S. Army.  The therapeutic strategies are broken into 

two exposure groups, moderate and incapacitating as defined by the Army.  The intended 

treatment method for both of these obviously varies, but is solely based on symptoms 

displayed by the victim.   

To verify the model, exposure time remained consistent at 15 minutes.  The 

exposure started at 5 minutes into the simulation time window and ended at 20 minutes.    

Time until treatment was administered varied between 5, 10 and 15 minutes from the 

start of the simulation.   These timing seemed appropriate for the amount of time it would 

take until treatment would be rendered.  For each simulation the concentration of Sarin 

and duration of exposure (Ct) were recorded as well as time until treatment, amount of 

antidote given and the symptom level.  For this set of simulations atropine and 

pralidoxime were administered intramuscularly at the level currently prescribed by the 

CDC and the Army.  For the moderate symptoms a dose of 2 mg of atropine and 600 mg 

of  pralidoxime was simulated.  For the more severe symptoms 6 mg atropine and 1800 

mg of pralidoxime was simulated.  With the prescribed dosing administered the symptom 

level was tracked to verify effectiveness of dosing.  Maximum symptom levels and 

increase or decrease of symptoms was recorded after each simulation. 

The second set of simulations examined a scenario in which a victim was exposed 

to a relatively low concentration of Sarin and they were displaying moderate symptoms.  

The assumption for this scenario is that an individual would be triaged out of the hot-

zone and taken to a local hospital or military aid station for follow on treatment with only 

oxime being administered. The timing for the administration was simulated at 30, 45 and 

60 minutes.  With the dosing strategy not clearly defined the assumption was made that 
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the attending physician may prescribe a prophylactic dose of oxime.  The dosing was 

simulated at 600 mg and then again at 200 mg in order to determine the effects oxime 

therapy would render on an individual displaying moderate symptoms.   
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IV. Results and Discussion 
 

A complete list of results achieved for each exposure scenario and treatment applied can 

be found in Appendix C.  Only simulations found to be most relevant are presented in 

this section with a graphical depiction.  This section is divided into two segments: Model 

Verification and Test for Re-bound of Symptoms. 

Model Verification 

The model was verified against current treatment protocols that correspond to the 

type of symptom level observed to demonstrate that the model is behaving as expected 

against scientifically verified parameters.  Without proper verification any simulations 

that were produced would be met with skepticism regarding the validity of the model.  

The intent is to prove that the model is behaving as closely as possible to a human body 

when exposed to Sarin gas and the treatment protocol prescribed is effective in 

alleviating symptoms. 

Due to the fact that the lethality of these agents is known and someone exposed to 

these levels would be considered expectant simulations using this level of toxicity was 

not applied.  For simulation procedures the model was verified against a moderate 

exposure (MCT) and an incapacitating exposure (ICT).  These levels of exposure are 

defined by the U.S. Army.  The MCT is any exposure up to 1.5 Ct and the ICT was 

anything above a Ct of 1.75.   In order to properly run a model based on mathematical 

equations correct parameters are invaluable.  However, when dealing with actual victims 

the concentration one is exposed to will not be known.   That is why it is more important 

to focus on the symptom level.   
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The treatment applied for MCT was 2 mg atropine and 600 mg oxime given via intra-

muscular injection at time intervals of 15, 20 and 30 minutes into the simulation.  Values 

graphically displayed are the following: 1. Active AChE levels, 2. Active OP, 3. Oxime 

levels, 4. Symptom line, 5. Atropine levels.  These times were chosen based on the 

assumption that it would take at least those times for someone to receive any treatment. 

The ICT followed the same time intervals, but the dosing was increased to 6 mg atropine 

and 1800 mg oxime.  The dosing strategies are based on CDC and U.S. Army protocol.  

1) Simulations 1a, 1b, 1c (MCT): These three simulations tested a very low Ct, 1.5, with 

a treatment of both atropine and oxime given at the aforementioned times and the 

dosing prescribed for mild symptoms.  The symptom line, #4 on the graph, rises as 

soon as the Sarin gas is introduced and the AChE levels, line #1, drop accordingly.  

As previously mentioned the AChE recovery would not be as rapid as portrayed in 

this model, but due to the compressed timeframe intended to be illustrated by this 

model recovery happens faster.   

a) Administered at 15 minutes:  With treatment being administered at 15 minutes 

into the simulation the symptom level is fairly low, only reaching a maximum of 

1.15 on the symptom line.  With such a low symptom level it is debatable wither 

or not treatment would be given.  But, to demonstrate that the model is behaving 

appropriately it was simulated.  With such a mild symptom level the treatment 

pushes the symptom line below 1.  This is due to the action of the atropine 

blocking receptor sites and the potential of producing negative results with such a 

mild exposure.  Although not life threatening the values less than one on the 

symptom line would be rapid heartbeat, nausea, dizziness, and lack of sweating. 
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Figure 6. Simulation 1a, Moderate Symptoms, Treatment at 15 minutes 

Ct(concentration*time)     
ExposureTime 

(Minutes) 
ATROPINE 
DOSE/Time 

OXIME 
DOSE/Time 

Symptom  
Level Max. 

Rebound 
Symptom 

Max. 

1.5=(.1*15) 15 2mg/15 min 600mg/15min 1.15 0 

 
 

b) Administered at 20 minutes:  The symptom line reaches a maximum of 1.2 vice 

1.15 for the previous simulation.  This would be expected since time until 

treatment increased by 5 minutes.  The gas has longer time to work its effects on 

the body.  Again, AChE levels drop as soon as Sarin is introduced but rebounds 

once oxime and atropine are applied.  Similar to the last simulation the symptom 

line drops below 1 due to the mild exposure. 
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Figure 7. Simulation 1b, Moderate Symptoms, Treatment at 20 Minutes 

Ct(concentration*time)     
Exposure Time 

(Minutes) 
ATROPINE 
Dose/Time 

OXIME 
Dose/Time 

Symptom  
Level Max. 

Rebound 
Symptom 

Max. 

1.5=(.1*15) 15 2mg/20 min 600mg/20 min 1.2 0 

 

c) Administered at 30 minutes:  Only difference from the previous two simulations 

is the time until the treatment is applied, 30 minutes post exposure.  Accordingly, 

the symptom line reaches a maximum of 1.25, higher than the previous two which 

would be expected.  A significant note on this simulation is the drop in AChE 

levels once the atropine and oxime are introduced.  This is suspected to be the 

resurgence of bound Sarin caused by the introduction of the oxime.  The oxime 

breaks the bond between the Sarin and AChE, thus releasing more unbound Sarin 

into the system.  However, the symptom line tracks accordingly and begins to 

return to the natural state. 
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Figure 8. Simulation 1c, Moderate Symptoms, Treatment at 30 Minutes 

Ct(concentration*time)     
Exposure Time 

(Minutes) 
ATROPINE 
DOSE/Time 

OXIME 
DOSE/Time 

Symptom Level 
Max. 

Rebound 
Symptom 

Max. 

1.5=(.1*15) 15 2mg/30 min 600mg/30 min 1.25 0 

 
 
 

2) Simulations 2a, 2b, 2c (ICT):   The Ct was raised to 2.25 for these next three 

simulations and accordingly the dosage was increased to the prescribed amount, 6 mg 

atropine and 1800 mg oxime.   

a) Administered at 15 minutes:  As would be expected the symptom line reached a 

level that would be considered incapacitating, 1.48.  Likewise once the exposure 

began the AChE levels dropped.  Once treatment was administered the symptom 

line began to gradually approach steady state.  Thus proving that the treatment is 

effective. 

Figure 9. Simulation 2a, Incapacitating Symptoms, Treatment at 15 Minutes 

Ct(concentration*time)     
ExposureTime 

(Minutes) 
ATROPINE 
DOSE/Time OXIME DOSE/Time 

Symptom Level 
Max. 

Rebound 
Symptom 

Max. 
2.25=(.15*15) 

15 6mg/15 min 1800mg/15min 1.48 0  
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b) Administered at 20 minutes:  The symptom line reached a maximum of 1.75 due 

to the fact that treatment was not administered until 20 minutes.  Similarly the 

AChE levels dropped in response to the exposure to a level considerably lower 

than the MCT scenario.  This would be expected because the concentration is 

greater.  Treatment was effective as shown by the symptom line approaching 

steady state. 

Figure 10. Simulation 2b, Incapacitating Symptoms, Treatment at 20 Minutes 

Ct(concentration*time)     
ExposureTime 

(Minutes) 
ATROPINE 
DOSE/Time 

OXIME 
DOSE/Time 

Symptom Level 
Max. 

Rebound 
Symptom 

Max. 

2.25=(.15*15) 15 6mg/20 min 1800mg/20 min 1.75 0  

 

 

c) Administered at 30 minutes:  With the Ct remaining constant but the time until 

treatment applied extended out to 30 minutes the symptom line reached a 

maximum value of 1.94.  With 1.90 being the maximum tolerable limit for 

symptoms this threshold was crossed and the victim would have expired.   
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Figure 11. Simulation 2c, Incapacitating Symptoms, Treatment at 30 Minutes 

Ct(concentration*time)     
ExposureTime 

(Minutes) 
ATROPINE 
DOSE/Time 

OXIME 
DOSE/Time 

Symptom Level 
Max. 

Rebound 
Symptom 

Max. 

2.25=(.15*15) 15 6mg/30 min 1800mg/30 min 1.94 0  

 
 
 

Test for Re-Bound in Symptoms 

With the model verified it was time to test the hypothesis that the administration of oxime 

alone to victims suffering from mild exposure levels may increase the symptoms.  Nine 

simulations were run all with symptom levels at 38% inhibition of ACh, equating to a 

symptom value of 1.38.  All simulations were run with treatment being administered at 

30, 45 and 60 minutes after initial exposure using the treatment protocol prescribed by 

the CDC and U.S. Army for mild exposure victims.   These times were chosen based on 

the fact the individuals displaying less severe symptoms would not be treated in the hot-

zone.  They would be triaged and then sent off to a medical center to be evaluated and 

treated.  With the treatment protocol being at the discretion of the physician to treat 

symptoms to alleviate suffering only oxime therapy might well be a plausible avenue of 

approach.   

3) Simulations 3a, 3b, 3c (600mg Intra-Muscular Oxime):    



40 

a) Administered at 30 minutes:  Symptom level rebounded by .01.  While not a 

significant increase it still does represent an increase in symptom level when 

symptoms were starting to diminish naturally through the course of time.  

However, the symptom level did return to steady state fairly quickly after the 

administration of oxime, proving that while not detrimental to recovery the 

effectiveness in speeding recovery is questionable at this stage of the simulations. 

Figure 12. Simulation 3a, 600mg Oxime IM at 30 Minutes 

Ct 
(concentration*time)     

ExposureTime 
(Minutes) 

OXIME 
DOSE/Time 

Symptom 
Level Max. 

Recovery 
Symptom 
Level Min. 

Rebound 
Symptom 

Max. 

Rebound 
Max-

Recovery 
Min 

Method 
of Oxime 
Infusion 

1.5=(.15*10) 10 600mg/30min 1.38 1.21 1.22 0.01 IM 

 

 

 

 

 

 

b) Administered at 45 minutes:  With the treatment delayed even further the natural 

recovery process of the body brought the symptom line down from 1.38 to 1.09, 

but as soon as oxime was administered the level rebounded to 1.1.  Again, not a 

dramatic increase in symptoms, nonetheless an increase.   
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Figure 13. Simulation 3b, 600mg Oxime IM at 45 Minutes 

Ct(concentration*time)     
ExposureTim
e (Minutes) 

OXIME 
DOSE/Time 

Symptom Level 
Max. 

Recovery 
Symptom 
Level Min. 

Rebound 
Sympto
m Max. 

Rebound 
Max-

Recovery 
Min 

Method 
of 

Oxime 
Infusio

n 

1.5=(.15*10) 10 600mg/45min 1.38 1.09 1.1 0.01 IM 

 

 

 

 

 

 

 

c) Administered at 60 minutes:  Even after an extended period of time, 60 minutes, 

without treatment a slight increase in the symptom line was recorded.  The 

symptom line naturally recovered to 1.06 and then rebounded to 1.07 when oxime 

was administered.  While these symptoms levels most likely would not require 

treatment of any kind, the proof still remains that symptom levels increased when 

oxime was applied. 

Figure 14. Simulation 3c, 600mg Oxime IM at 60 Minutes 

Ct(concentration*time)     
ExposureTime 

(Minutes) 
OXIME 

DOSE/Time 
Symptom 
Level Max. 

Recovery 
Symptom 
Level Min. 

Rebound 
Symptom 

Max. 

Rebound 
Max-

Recovery 
Min 

Method 
of Oxime 
Infusion 

1.5=(.15*10) 10 600mg/60min 1.38 1.06 1.07 0.01 IM 
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4) Simulations 4a, 4b, 4c (600mg Intra-Venous Oxime):  These simulations start the use 

of intra-venous administration of oxime therapy applied at the same time intervals as 

the previous simulations. 

a) Administered at 30 minutes:  The symptom level rebounded the most significantly 

in this scenario.  From a low of 1.21 back up to 1.26.  With the oxime hitting the 

system faster and at a higher concentration it enabled the release of bound Sarin to 

be re-released into the system to cause its damaging effects.  At 30 minutes the 

levels of bound Sarin in the system would still be relatively high thus causing a 

significant spike in symptoms.  

Figure 15. Simulation 4a, 600mg Oxime IV at 30 Minutes 

Ct(concentration*time)     
ExposureTime 

(Minutes) 
OXIME 

DOSE/Time 
Symptom 
Level Max. 

Recovery 
Symptom 
Level Min. 

Rebound 
Symptom 

Max. 

Rebound 
Max-

Recovery 
Min 

Method 
of Oxime 
Infusion 

1.5=(.15*10) 10 600mg/30 min 1.38 1.21 1.26 0.05 IV 

 

 

 

 

 

 

 

b) Administered at 45 minutes:  As time moves away from exposure and oxime is 

administered the symptom rebound starts to decrease.  
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Figure 16. Simulation 4b, 600mg Oxime IV at 45 Minutes 

Ct(concentration*time)     
ExposureTime 

(Minutes) 
OXIME 

DOSE/Time 
Symptom 
Level Max. 

Recovery 
Symptom 
Level Min. 

Rebound 
Symptom 

Max. 

Rebound 
Max-

Recovery 
Min 

Method of 
Oxime 

Infusion 

1.5=(.15*10) 10 600mg/45 min 1.38 1.09 1.12 0.03 IV 

 

 

 

 

 

 

c) Administered at 60 minutes:  No rebound in symptom observed when treatment 

was delayed out to 60 minutes.  The natural degradation process has had time to 

work and alleviate symptoms. 

Figure 17. Simulation 4c, 600mg Oxime IV at 60 Minutes 

Ct(concentration*time)     
ExposureTime 

(Minutes) 
OXIME 

DOSE/Time 
Symptom 
Level Max. 

Recovery 
Symptom 
Level Min. 

Rebound 
Symptom 

Max. 

Rebound 
Max-

Recovery 
Min 

Method of 
Oxime 

Infusion 

1.5=(.15*10) 10 600mg/60 min 1.38 1.06 n/a n/a IV 
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5) Simulations 5a, 5b, 5c (200mg Intra-Venous Oxime):  In order to draw an accurate 

conclusion as to whether oxime therapy was beneficial or detrimental the dosing of 

oxime was lowered to 200 mg with the same time frame for administration.  The 

results for the lower dose mirror that of the 600 mg intra-venous treatment.   

a) Administered at 30 minutes: Symptom levels rebounded by .05, while AChE 

levels dropped at the same time and the same level as they did with the 600 mg 

application. 

Figure 18. Simulation 5a, 200mg Oxime at 30 Minutes 

Ct(concentration*time)     
ExposureTime 

(Minutes) 
OXIME 

DOSE/Time 
Symptom 
Level Max. 

Recovery 
Symptom 
Level Min. 

Rebound 
Symptom 

Max. 

Rebound 
Max-

Recovery 
Min 

Method of 
Oxime 

Infusion 

1.5=(.15*10) 10 200mg/30 min 1.38 1.21 1.26 0.05 IV 

 

 

 

 

 

 

 

b) Administered at 45 minutes: Symptom levels rebounded by .05, thus proving that 

even at a lower dose the use of oxime can produce contrary results. 
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Figure 19. Simulation 5b, 200mg Oxime at 45 Minutes 

Ct(concentration*time)     
ExposureTime 

(Minutes) 
OXIME 

DOSE/Time 
Symptom 
Level Max. 

Recovery 
Symptom 
Level Min. 

Rebound 
Symptom 

Max. 

Rebound 
Max-

Recovery 
Min 

Method of 
Oxime 

Infusion 

1.5=(.15*10) 10 200mg/45 min 1.38 1.09 1.14 0.05 IV 

 

 

 

 

 

 

 

c) Administered at 60 minutes:  As previously demonstrated the symptom level 

dropped to a level that would not be recognizable.  Oxime therapy was still 

applied and no increase in symptom levels was recorded. 

Figure 20. Simulation 5c, 200mg Oxime at 60 Minutes 

Ct(concentration*time)     
ExposureTime 

(Minutes) 
OXIME 

DOSE/Time 
Symptom 
Level Max. 

Recovery 
Symptom 
Level Min. 

Rebound 
Symptom 

Max. 

Rebound 
Max-

Recovery 
Min 

Method of 
Oxime 

Infusion 

1.5=(.15*10) 10 200mg/60 min 1.38 1.06 n/a n/a IV 
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V.  Conclusion  

With the relative ease in which nerve agents are made, the vast quantity that exist 

throughout the world and the horrific potential they wield the possibility of an attack on a 

military or civilian population seems inevitable.  The potential loss of life and suffering 

would be staggering and on a scale not frequently witnessed.  But with proper procedures 

in place the losses can be mitigated.  Employing the procedures set forth by the CDC and 

U.S. Army the vast majority of exposed patients that arrive at a hospital will survive.  

However, the key to survival will be in the triage procedures and the follow on care 

provided with limited resources. 

The key to the survival of the individuals suffering from the most grave of 

symptoms is the expedient treatment with antidotes (atropine and oxime) that may well 

be in short supply.  By administering these crucial drugs in the prescribed dosing to only 

those individuals who truly need it will inevitably save lives and reduce suffering.  But 

administering these drugs, specifically oxime, to victims displaying moderate symptoms 

does not alleviate symptoms and potentially robs that drug from someone who could 

benefit from it.  

The overall conclusion reached in this research is as follows: 

• The current nerve agent treatment protocol prescribed by the CDC and 

U.S. Army is effective in saving lives for those victims experiencing 

incapacitating symptom. 

• Oxime therapy alone given to those victims experiencing mild symptoms 

is not effective.  The recommended treatment for these individuals would 

be no oxime therapy administered and potential administration of 
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diazepam as a calming agent to treat psychological shock and the 

replacement of fluids in the manner the attending physician finds 

appropriate.   

This minor modification to the treatment protocol will allow attending physicians 

to use the limited resources they posses in the most effective manner possible.  This will 

lead to the ultimate goal, saving as many lives as possible after a nerve agent attack. 
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Appendix A. Equations 

Organophosphates 
Slowly Perfused, Thigh, Diaphragm and Fat Tissues 

𝑉𝑡 𝑑𝐶
𝑑𝑡

= FtQc(Ca − �Ct
p
�)                

 Brain, Liver. Kidney and Richly Perfused Tissues 

𝑉𝑡
𝑑𝐶
𝑑𝑡

= FtQcCa − �
FtQcCt

p
� −

VmaxCt
Km + Ct

 

Venous Tissue 

𝑉𝑡
𝑑𝐶
𝑑𝑡

= Qc∑FtCt − QcCv − �
FtQcCt

p
� −

VmaxCv
Km + Cv

 

 Lung Tissue 

𝑄𝑝𝐶𝑎𝑖𝑟 + 𝑄𝑐𝐶𝑣 =
QpCa

p
+ QcCa 

 Arterial Tissue 

𝑉𝑎
𝑑𝐶
𝑑𝑡

= QcCl − QcCa −
VmaxCa
Km + Ca

 

Oxime 
 Brain, Diaphragm, Fat, Richly Perfused, Slowly Perfused Tissue 

𝑉𝑡
𝑑𝐶
𝑑𝑡

= FtQc(Ca −
Ct
p

) 

 Kidney Tissue 

𝑉𝑡
𝑑𝐶
𝑑𝑡

= FtQc(Ca −
Ct
p
− ECa) 

Liver Tissue 

𝑉𝑡
𝑑𝐶
𝑑𝑡

= FtQcCa −
FtQcCtCt

p
−

VmaxCt
Km + Ct

 

Thigh Tissue 
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𝑉𝑡
𝑑𝐶
𝑑𝑡

= FtQcCa + IM −
FtQcCtCt

p
 

Venous Tissue 

𝑉𝑣
𝑑𝐶
𝑑𝑡

= Qc∑FtCt + IV − QcCv 

Arterial Tissue 

𝑉𝑎
𝑑𝐶
𝑑𝑡

= Qc(Cv − Ca) 

Atropine 
 Brain, Diaphragm, Fat, Richly Perfused, Slowly Perfused Tissues 

𝑉𝑡
𝑑𝐶
𝑑𝑡

= FtQc(Ca −
Ct
p

) 

 Kidney Tissue 

𝑉𝑡
𝑑𝐶
𝑑𝑡

= FtQc(Ca −
Ct
p
− ECa) 

 Liver Tissue 

𝑉𝑡
𝑑𝐶
𝑑𝑡

= FtQcCa −
FtQcCtCt

p
−

VmaxCt
Km + Ct

 

 

Thigh Tissue 

𝑉𝑡
𝑑𝐶
𝑑𝑡

= FtQcCa + IM −
FtQcCt

p
 

Venous Tissue 

𝑉𝑡
𝑑𝐶
𝑑𝑡

= Qc∑FtCt + IV − QcCv 
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Arterial Tissue 

𝑉𝑎
𝑑𝐶
𝑑𝑡

= Qc(Cv − Ca) 

Acetylcholinesterase 
 Brain, Kidney, Diaphragm, Liver, Slowly Perfused, Richly Perfused and Thigh 
Tissue 

𝑉𝑡
𝑑𝐶
𝑑𝑡

= X1 − X2CtVt 

Butyrylcholinesterase 
 Brain, Kidney, Diaphragm, Liver, Slowly Perfused, Richly Perfused and Thigh 
Tissue 

𝑉𝑡
𝑑𝐶
𝑑𝑡

= Y1 − Y2CtVt 

Carboxylesterase 
Brain, Kidney, Diaphragm, Liver, Slowly Perfused, Richly Perfused and Thigh 

Tissue 

𝑉𝑡
𝑑𝐶
𝑑𝑡

= Z1 − Z2CtVt 

Acetylcholinesterase and Organophosphate Chemical Reaction 

𝑑(𝐴𝐶ℎ𝐸)
𝑑𝑡

= 𝐾𝑖(𝐴𝐶ℎ𝐸)(𝑂𝑃) − 𝐾𝑠 �
𝐴𝐶ℎ𝐸
𝑂𝑃

� − 𝐾𝑎 �
𝐴𝐶ℎ𝐸
𝑂𝑃

� 

Butyrylcholinesterase and Oganophosphate Chemical Reaction 

𝑑(𝐵𝑢𝐶ℎ𝐸)
𝑑𝑡

= 𝐾𝑖(𝐵𝑢𝐶ℎ𝐸)(𝑂𝑃) − 𝐾𝑠 �
𝐵𝑢𝐶ℎ𝐸
𝑂𝑃

� − 𝐾𝑎 �
𝐵𝑢𝐶ℎ𝐸
𝑂𝑃

� 

Carboxylesterase and Organophasphate Chemical Reaction 

𝑑(𝐶𝑎𝐸)
𝑑𝑡

= 𝐾𝑖(𝐶𝑎𝐸)(𝑂𝑃) − 𝐾𝑠 �
𝐶𝑎𝐸
𝑂𝑃

� − 𝐾𝑎 �
𝐶𝑎𝐸
𝑂𝑃

� 

Oxime and Acetylcholinesterase-organophosphate complex chemical reaction 

𝑑(𝐴𝐶ℎ𝐸/𝑂𝑃)
𝑑𝑡

= 𝐾𝑟(
𝐴𝐶ℎ𝐸
𝑂𝑃

)(𝑂𝑥𝑖𝑚𝑒) 

Oxime and Butyrylcholinesterase-organophosphate complex chemical reaction 

𝑑(𝐵𝑢𝐶ℎ𝐸/𝑂𝑃)
𝑑𝑡

= 𝐾𝑟(
𝐵𝑢𝐶ℎ𝐸
𝑂𝑃

)(𝑂𝑥𝑖𝑚𝑒) 
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Oxime and Carboxylesterase-organophosphate complex chemical reaction 

𝑑(𝐶𝑎𝐸/𝑂𝑃)
𝑑𝑡

= 𝐾𝑟(
𝐶𝑎𝐸
𝑂𝑃

)(𝑂𝑥𝑖𝑚𝑒) 

Atropine, Acetylcholine and Acetylcholinesterase reaction 

𝑑(𝐴𝐶ℎ 𝑠𝑖𝑡𝑒)
𝑑𝑡

= 𝑝1 �
𝑝1

𝑝1 + 𝑎𝑡𝑟𝑜𝑝𝑖𝑛𝑒
� − 𝑝2(𝐴𝐶ℎ𝐸)(𝐴𝐶ℎ 𝑠𝑖𝑡𝑒) 

 

List of Symbols 
Vt: Volume of tissue 
dc/dt: Change in chemical concentration with respect to time 
Ft: Fraction of blood flow that the tissue 
Qc: Cardiac output 
Ca: Chemical concentration in arterial tissue 
Ct: Chemical concentration in tissue 
P: Tissue to blood partition coefficient 
Vmax: Maximum metabolism rate 
Km: Michaelis-Menton constant 
Vv: Volume of venous tissue 
Cv: Chemical concentration in venous tissue 
Qp: Pulmonary ventilation rate 
Cair: Chemical concentration in air 
Va: Volume of arterial tissue 
Cl: Chemical concentration of blood in lungs 
E: Elimination fraction 
IM: Intramuscular injection rate 
IV: Intravenous injection rate 
Ki: Organophosphate reaction rate coefficient with esterase 
Ks: Organophosphate-esterase complex natural separation reaction rate coefficient 
Ka: Organophophate-esterase complex aging reaction rate coefficient 
Kr: Organophosphate-esterase complex reaction rate coefficient with oxime 
p1: Acetylcholine binding rate 
p2: Acetycholine degradation constant 
X1: Acetylcholinesterase synthesis rate 
X2: Acetylcholinesterase degradation rate 
Y1: Butyrylcholinesterase synthesis rate 
Y2: Butyrylcholinesterase degradation rate 
Z1: Carboxylesterase synthesis rate 
Z2: Carboxylesterase degradation rate 
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Appendix B. Parameters 
Physiological Parameters Measurement Source 

Body Weight 60.9kg Gearhart et al. 
Cardiac Output 302 L/hr Gearhart et al. 
Pulmonary Rate 354 L/hr Gearhart et al. 

      
Blood Flow to Tissue Fractions     

Arterial 1 Assumed 
Brain 0.134 Gearhart et al. 

Diaphragm 0.006 Gearhart et al. 
Richly Profused 0.2 Gearhart et al. 

Fat 0.036 Gearhart et al. 
Slowly Profused 0.1244 Gearhart et al. 

Thigh 0.0066 Gearhart et al. 
Kidney 0.223 Gearhart et al. 
Liver 0.27 Gearhart et al. 

Venous 1 Assumed 
      

Tissue Volume     
Arterial  1.218 L Gearhart et al. 
Brain 1.303 L Gearhart et al. 

Diaphragm 0.183 L Gearhart et al. 
Richly Profused 2.089 L Gearhart et al. 

Fat 10.353 L Gearhart et al. 
Slowly Profused 31.899 L Gearhart et al. 

Thigh 1.681 L Gearhart et al. 
Kidney .262 L Gearhart et al. 
Liver 2.436 L Gearhart et al. 

Venous 3.471 L Gearhart et al. 
      

Tissue Normalization Factors     
Arterial  .02 L/kg Gearhart et al. 
Brain .0214 L/kg Gearhart et al. 

Diaphragm .003L/kg Gearhart et al. 
Rapidly Profused .0343 L/kg Gearhart et al. 

Fat .17 L/kg Gearhart et al. 
Slowly Profused .5238 L/kg Gearhart et al. 

Thigh .0276 L/kg Gearhart et al. 
Kidney .0043 L/kg Gearhart et al. 
Liver .04 L/kg Gearhart et al. 
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Venous .057 L/kg Gearhart et al. 
      

Sarin Molecular Weight 140.1 mg/mmol Gearhart et al. 
Partition Coefficients     

Brain 0.67 Gearhart et al. 
Diaphragm  0.77 Gearhart et al. 

RPT 0.67 Gearhart et al. 
Fat 17.6 Gearhart et al. 
SPT 0.77 Gearhart et al. 

Thigh 0.77 Gearhart et al. 
Kidney 1.63 Gearhart et al. 
Liver 1.53 Gearhart et al. 

Arterial 1 Gearhart et al. 
Venous 1 Gearhart et al. 

      
Metabolic Parameters     

KM (Michaelis-Menton)     
Arterial 199 Gearhart et al. 
Brain 440 Gearhart et al. 

Kidney 134 Gearhart et al. 
Liver 237 Gearhart et al. 

Rapidly Profused  51 Gearhart et al. 
Venous 199 Gearhart et al. 
VMAX     
Arterial 5467 Gearhart et al. 
Brain 470 Gearhart et al. 

Kidney 5293 Gearhart et al. 
Liver 70695 Gearhart et al. 

Rapidly Profused  568 Gearhart et al. 
Venous 16401 Gearhart et al. 

      
Oxime Molecular Weight 132 mg/mmol Seaman 

Partition Coefficients     
Brain 0.67 Seaman 

Diaphragm 0.77 Seaman 
RPT 0.67 Seaman 
Fat 17.6 Seaman 
SPT 0.77 Seaman 

Thigh 0.77 Seaman 
Kidney 1.63 Seaman 
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Liver 1.53 Seaman 
Arterial 1 Seaman 
Venous 1 Seaman 

Metabolic Parameters     
KM Liver 700 mg/L Seaman 

Vmax Liver 6500 mg/hr Seaman 
Kidney Partition Parameter     

Elimination Partition 0.35 Seaman 
      

Atropine     
Molecular Weight 289 mg/mmol Seaman 

Partition Coefficients     
Brain 0.67 Seaman 

Diaphragm 0.77 Seaman 
RPT 0.67 Seaman 
Fat 17.6 Seaman 
SPT 2.1 Seaman 

Thigh 2.1 Seaman 
Kidney 1.63 Seaman 
Liver 1.53 Seaman 

Arterial 1 Seaman 
Venous 1 Seaman 

Metabolic Parameters     
KM Liver 700 mg/L  Gearhart 

Vmax Liver 6500 mg/hr  Gearhart 
Kidney Partition Parameter     

Elimination Partition 0.35 Seaman  
      

Acetycholinesterase     
Molecular Weight 320 mg/mmol Seaman 

Synthesis Rate     
Brain .00002 umol/hr Gentry et al. 

Diaphragm .000003 umol/hr Scaled from Gentry et al. 
RPT .00003 umol/hr Scaled from Gentry et al. 
Fat 0.0 umol/hr Scaled from Gentry et al. 
SPT .0005 umol/hr Scaled from Gentry et al. 

Thigh .00002 umol/hr Scaled from Gentry et al. 
Kidney .000004 umol/hr Scaled from Gentry et al. 
Liver .00004 umol/hr Scaled from Gentry et al. 

Arterial .0001 umol/hr Scaled from Gentry et al. 
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Venous .0001 umol/hr Gentry et al. 
Initial Concentration     

Brain .04928 umol Gentry et al. 
Diaphragm .000909 umol Gentry et al. 

RPT .008314 umol Gentry et al. 
Fat 0.0 umol Gentry et al. 
SPT .222196 umol Gentry et al. 

Thigh .011708 umol Gentry et al. 
Kidney .000104 umol Gentry et al. 
Liver .002424 umol Gentry et al. 

Arterial .001212 umol Gentry et al. 
Venous .003454 umol Gentry et al. 

Degradation Constant     
Brain .082508251/hr Seaman 

Diaphragm .00330033/hr Seaman 
RPT .003603837/hr Seaman 
Fat 0 Seaman 
SPT .002250266/hr Seaman 

Thigh .001708234/hr Seaman 
Kidney .038461538/hr Seaman 
Liver .01650165/hr Seaman 

Arterial .08250825/hr Seaman 
Venous .02895194/hr Seaman 

      
Butyrylcholinesterase     

Molecular Weight 83 mg/mmol Gearhart et al. 
Synthesis Rate     

Brain .00002 umol/hr Gentry et al. 
Diaphragm .000003 umol/hr Scaled from Gentry et al. 

RPT .00003 umol/hr Scaled from Gentry et al. 
Fat 0.0 umol/hr Gentry et al. 
SPT .0005 umol/hr Scaled from Gentry et al. 

Thigh .00002 umol/hr Scaled from Gentry et al. 
Kidney .000004 umol/hr Scaled from Gentry et al. 
Liver .00004 umol/hr Scaled from Gentry et al. 

Arterial .0001 umol/hr Scaled from Gentry et al. 
Venous .0001 umol/hr Gentry et al. 

Initial Concentration     
Brain .016859 umol Gentry et al. 

Diaphragm .002 umol Gentry et al. 
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RPT .006236 umol Gentry et al. 
Fat 0.0 umol Gentry et al. 
SPT .190454 umol Gentry et al. 

Thigh .010035 umol Gentry et al. 
Kidney .000782 umol Gentry et al. 
Liver .019392 umol Gentry et al. 

Arterial .00606 umol Gentry et al. 
Venous .017271 umol Gentry et al. 

   Degradation Constant     
Brain .00118631/hr Seaman 

Diaphragm .0015/hr Seaman 
RPT .004810776/hr Seaman 
Fat .004810776/hr Seaman 
SPT .002625306/hr Seaman 

Thigh .001993024/hr Seaman 
Kidney .00511509/hr Seaman 
Liver .002062706/hr Seaman 

Arterial .01650165/hr Seaman 
Venous .005790053/hr Seaman 

      
Carboxylesterase     
Molecular Weight 320 mg/mmol  Known 

Synthesis Rate     
Brain .00002 umol/hr Gentry et al. 

Diaphragm .000003 umol/hr Seaman 
RPT .00003 umol/hr Seaman 
Fat 0.0 umol/hr Seaman 
SPT .0005 umol/hr Seaman 

Thigh .00002 umol/hr Seaman 
Kidney .000004 umol/hr Seaman 
Liver .00004 umol/hr Seaman 

Arterial .0001 umol/hr Seaman 
Venous .0001 umol/hr Gentry et al. 

Initial Concentration     
Brain .778104 umol Gentry et al. 

Diaphragm .52722 umol Gentry et al. 
RPT 442.73754 umol Gentry et al. 
Fat 0.0 umol Gentry et al. 
SPT 73.007244 umol Gentry et al. 



57 

Thigh 3.846888 umol Gentry et al. 
Kidney 4.29957 umol Gentry et al. 
Liver 110.292 umol Gentry et al. 

Arterial 5.0904 umol Gentry et al. 
Venous 14.50764 umol Gentry et al. 

Degradation Constant     
Brain 2.57035*10-5/hr Seaman 

Diaphragm 5.69022*10-6/hr Seaman 
RPT 6.77602*10-8/hr Seaman 
Fat 0 Seaman 
SPT 6.848864*10-6/hr Seaman 

Thigh 5.19901*10-6/hr Seaman 
Kidney 9.30326*10-7/hr Seaman 
Liver 3.626674*10-7/hr Seaman 

Arterial 1.96448*10-5/hr Seaman 
Venous 6.89292*10-6/hr Seaman 

      
Acetycholine     

Molecular Weight 146 mg/mmol Holder 
Activation Rate Constants     

Brain .00719488 mg/hr Holder 
Diaphragm .000132714 mg/hr Holder 

RPT .001213844 mg/hr Holder 
SPT .032440616 mg/hr Holder 

Thigh .001709368 mg/hr Holder 
Kidney .000015184 mg/hr Holder 
Liver .000353904 mg/hr Holder 

      
Reaction Rate Coefficients     

AChE   
Ka 0.1386/hr Assumed 
Ki 220000 /mmol(hr) Assumed 
Kr 100/mmol(hr) Assumed 
Ks 1/hr Assumed 

BuChE 
  Ka .054/hr Assumed 

Ki 110000 Assumed 
Kr 300/hr Assumed 
Ks 1/hr Assumed 

CaE 
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Ka  0 Assumed  
Ki  110000/hr  Assumed 
Kr  300/hr  Assumed 
Ks  1/hr  Assumed 

K AcH-AcHE  20292.23826/hr  Assumed 
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Appendix C. Test Results 
 

Model Verification Mild Symptoms 

TEST 
# Ct(concentration*time)     

Exposure 
Time 

(Minutes) 
ATROPINE 
DOSE/Time 

OXIME 
DOSE/Time 

Symptom 
Level 
Max. 

Rebound 
Symptom 

Max. Recovery 
1 .75=(.15*5) 5 2mg/15 min 600mg/15min 1 0 yes 
2 1.5=(.15*10) 10 2mg/15 min 600mg/15min 1.14 0 yes 
3 1.5=(.1*15) 15 2mg/15 min 600mg/15min 1.15 0 yes 
                
4 .75=(.15*5) 5 2mg/20 min 600mg/20 min 1.03 0 yes 
5 1.5=(.15*10) 10 2mg/20 min 600mg/20 min 1.15 0 yes 
6 1.5=(.1*15) 15 2mg/20 min 600mg/20 min 1.2 0 yes 
    

 
          

7 .75=(.15*5) 5 2mg/30 min 600mg/30 min 1.04 0 yes 
8 1.5=(.15*10) 10 2mg/30 min 600mg/30 min 1.19 0 yes 
9 1.5=(.1*15) 15 2mg/30 min 600mg/30 min 1.25 0 yes 

 
Model Verification Incapacitating Symptoms 

TEST 
# Ct(concentration*time)     

Exposure 
Time 

(Minutes) 
ATROPINE 
DOSE/Time 

OXIME 
DOSE/Time 

Symptom 
Level 
Max. 

Rebound 
Symptom 

Max. Recovery 
10 2.0=(.4*5) 5 6mg/15 min 1800mg/15min 1.34 0 yes 
11 3.0=(.3*10) 10 6mg/15 min 1800mg/15min 1.41  0 yes 
12 2.25=(.15*15) 15 6mg/15 min 1800mg/15min 1.48  0 yes 
                

13 1.75=(.35*5) 5 6mg/20 min 1800mg/20 min 1.62  0 yes 
14 2.0=(.2*10) 10 6mg/20 min 1800mg/20 min 1.69 0  yes 
15 2.25=(.15*15) 15 6mg/20 min 1800mg/20 min 1.75  0 yes 
    

 
          

16 1.75=(.35*5) 5 6mg/30 min 1800mg/30 min 1.62  0 yes 
17 2.0=(.2*10) 10 6mg/30 min 1800mg/30 min 1.89  0 yes 
18 2.25=(.15*15) 15 6mg/30 min 1800mg/30 min 1.94  0 no 
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Test for Re-Bound in Symptoms 

TEST 
# Ct(concentration*time)     

ExposureTime 
(Minutes) 

OXIME 
DOSE/Time 

Symptom 
Level 
Max. 

Recovery 
Symptom 

Level 
Min. 

Rebound 
Symptom 

Max. 

Rebound 
Max-

Recovery 
Min 

Method 
of 

Oxime 
Infusion 

19 1.5=(.15*10) 10 600mg/30min 1.38 1.21 1.2 0.01 IM 
20 1.5=(.15*10) 10 600mg/45min 1.38 1.09 1.1 0.01 IM 
21 1.5=(.15*10) 10 600mg/60min 1.38 1.06 1.07 0.01 IM 
                  

22 1.5=(.15*10) 10 600mg/30min 1.38 1.21 1.26 0.5 IV 
23 1.5=(.15*10) 10 600mg/45min 1.38 1.09 1.12 0.3 IV 
24 1.5=(.15*10) 10 600mg/60min 1.38 1.06 n/a n/a IV 
                  

25 1.5=(.15*10) 10 200mg/30min 1.38 1.21 1.26 0.5 IV 
26 1.5=(.15*10) 10 200mg/45min 1.38 1.1 1.14 0.3 IV 
27 1.5=(.15*10) 10 200mg/60min 1.38 1.06 n/a n/a IV 
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